Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 754
Filtrar
1.
Ultrason Sonochem ; 105: 106857, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38552299

RESUMO

This work investigated the effects of the combined use of thermosonication-preconditioned lactic acid bacteria (LAB) with the addition of ultrasound-assisted pineapple peel extracts (UU group) on the post-acidification potential, physicochemical and functional qualities of yogurt products, aimed at achieving prolonged preservation and enhancing functional attributes. Accordingly, the physical-chemical features, adhesion properties, and sensory profiles, acidification kinetics, the contents of major organic acids, and antioxidant activities of the differentially processed yogurts during refrigeration were characterized. Following a 14-day chilled storage process, UU group exhibited acidity levels of 0.5-2 oT lower than the control group and a higher lactose content of 0.07 mg/ml as well as unmodified adhesion potential, indicating that the proposed combination method efficiently inhibited post-acidification and delayed lactose metabolism without leading to significant impairment of the probiotic properties. The results of physicochemical analysis showed no significant changes in viscosity, hardness, and color of yogurt. Furthermore, the total phenolic content of UU-treated samples was 98 µg/mL, 1.78 times higher than that of the control, corresponding with the significantly lower IC50 values of DPPH and ABTS radical scavenging activities of the UU group than those of the control group. Observations by fluorescence inverted microscopy demonstrated the obvious adhesion phenomenon with no significant difference found among differentially prepared yogurts. The results of targeted metabolomics indicated the proposed combination strategy significantly modified the microbial metabolism, leading to the delayed utilization of lactose and the inhibited conversion into glucose during post-fermentation, as well as the decreased lactic acid production and a notable shift towards the formation of relatively weak acids such as succinic acid and citric acid. This study confirmed the feasibility of thermosonication-preconditioned LAB inocula, in combination with the use of natural active components from fruit processing byproducts, to alleviate post-acidification in yogurt and to enhance its antioxidant activities as well as simultaneously maintaining sensory features.


Assuntos
Ananas , Antioxidantes , Fermentação , Extratos Vegetais , Iogurte , Iogurte/microbiologia , Iogurte/análise , Ananas/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Antioxidantes/farmacologia , Sonicação , Temperatura , Concentração de Íons de Hidrogênio , Manipulação de Alimentos/métodos , Qualidade dos Alimentos
2.
Int J Biol Macromol ; 263(Pt 1): 130303, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38382785

RESUMO

Aqueous lupine seeds (Lupinus albus L.) extracts were evaluated as a natural fat substitute in low-fat yogurt production. Thus, the chemical composition, particle size, molecular weight, total phenolic (TPC), and total flavonoids (TFC) of the selected extract were estimated. Also, the antimicrobial activity and antioxidant capacity of selected extract were investigated. Yogurt with neutral lupine extract (NeLP) had the highest all sensorial attributes compared to other extracts. Also, the incorporation of NeLP during low-fat yogurt processing increased the solid content, and viscosity, as well as improved the textural profile and sensorial attributes without any negative effect on the yogurt's color. SEM micrographs of NeLP-yogurt microstructure showed a matrix characterized by large fused casein micelles clusters with comparatively lower porosity compared to control yogurt (without NeLP). The chemical composition of NeLP indicated that the major sugar constituents are glucose and galactose with different molar fractions. The molecular weight of NeLP is 460.5 kDa with a particle size of 1519.9 nm. Also, IC50 of NeLP is 0.589 mg/ml, while TPC and TFC are 7.17, and 0.0137 g/100 g sample, respectively. Hence, lupine neutral extract (0.25%) could be used as a fat replacer or texture improver ingredient in such low-fat yogurt which led to improved its characteristics without any negative defect during 7 days at 5 °C.


Assuntos
Lupinus , Iogurte/análise , Antioxidantes/metabolismo , Verduras , Extratos Vegetais , Sementes/metabolismo
3.
J Food Sci ; 89(2): 1243-1251, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38174813

RESUMO

This study aimed to evaluate the incorporation effect of probiotic culture (Lactobacillus acidophilus) in buffalo milk yogurt on stability and microbial survival rate during storage. In addition, the influence of probiotic culture on blood lipid profiles was investigated for a period of 6 weeks. Yogurt was prepared with buffalo milk with different probiotic concentrations (0, 100, and 50%) and administered to subjects at 300 g/day. All treatments showed a significant difference (p < 0.05) in acidity and pH during storage for 21 days at refrigeration temperature, while treatment with 100% probiotic culture (G2) was most prominent. Physicochemical analysis demonstrated a maximum pH decline of 0.60 in G2, followed by 0.56 in the mix cultured (G3). However, increasing trend was observed in acidity, with highest increment of 0.89% followed by 0.54% in G2 and G3, respectively. Storage study of total viable count demonstrated the reduction in the enumeration of microbial population owing to the production of organic acids, while L. acidophilus had a high survival rate of 5.25 log 10 CFU/g. Probiotic culture produced significant results in the lipid profile of subjects. Treatments containing probiotic bacteria G2 and G3 showed the lowest total cholesterol (183.57 and 182.85 mg/dL) and low density lipoproteins (LDL) (105.80 106.40 mg/dL), respectively. In terms of high density lipoproteins (HDL), G2 showed a highest increment of 49.82 mg/dL. Results of our study revealed that consumption of probiotic yogurt is beneficial for human health by improvement of blood lipid profiles and reduces cardiovascular patient's percentage around the globe. PRACTICAL APPLICATION: Experimental investigation of the effect of probiotic culture addition on the stability of buffalo milk yogurt. Assessment of the potential of Lactobacillus acidophilus on blood lipid profiles.


Assuntos
Probióticos , Iogurte , Animais , Humanos , Iogurte/análise , Búfalos , Colesterol/metabolismo , Lactobacillus acidophilus/metabolismo , Lipídeos
4.
Food Chem ; 438: 138008, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-37992604

RESUMO

Traditional sensory evaluation, relying on human assessors, is vulnerable to subjective error and lacks automation. Nonetheless, the complexity of human sensation makes it challenging to develop a computational method in place of human sensory evaluation. To tackle this challenge, this study constructed logistic regression classification models that could predict yogurt aroma types based on aroma-active compound concentrations with high classification accuracy (AUC ROC > 0.8). Furthermore, indicator compounds discovered from feature importance analysis of classification models led to the derivation of classification criteria of yogurt aroma types. Through constructing and analyzing machine learning models on yogurt aroma types, this study provides an automated pipeline to monitor sensory properties of yogurts.


Assuntos
Odorantes , Iogurte , Humanos , Odorantes/análise , Iogurte/análise , Sensação
5.
Foodborne Pathog Dis ; 21(2): 134-136, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37917929

RESUMO

Interest in the "microbiota" of dairy products and studies on this subject is increasing day by day. In this study, homemade buffalo yogurt was collected from five different local producers in Amasra province, and their microbiota was evaluated by next-generation sequencing. Salmonella enterica was found in all yogurts (1.2-3.17%). Klebsiella pneumoniae was found to be 1.12% and 5.15% in two of the samples. Staphylococcus aureus was found to be 3.17% in only a single sample. The presence of these potentially pathogenic bacteria suggests that more attention should be paid to hygiene rules during homemade production, processing, and distribution of these products being offered for sale in public markets. These yogurt products can potentially carry risks of contamination and should be periodically checked by the relevant authorities.


Assuntos
Leite , Iogurte , Animais , Leite/microbiologia , Iogurte/análise , Iogurte/microbiologia , Búfalos , Microbiologia de Alimentos , Staphylococcus aureus
6.
J Dairy Sci ; 107(1): 62-73, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37709021

RESUMO

Nutritional therapy, which may have advantages over medication, is being investigated as a novel treatment for pregnancy-induced hypertension. Several studies have shown that probiotic yogurt supplementation during pregnancy has beneficial effects on maternal and fetal health. In this study, fermented buffalo milk was produced with yogurt culture and Lactobacillus plantarum B, a probiotic isolated from healthy breast milk with high angiotensin-converting enzyme inhibitory activity. The fermentation conditions under which the angiotensin-converting enzyme (ACE) inhibitory activity reached 84.51% were optimized by the response surface method as follows: 2 × 106 cfu/mL of L. plantarum B, yogurt culture 2.5 × 105 cfu/mL, and 8 h at 37°C. The distribution of ACE inhibitory peptides from fermented buffalo milk and fermented cow milk were further analyzed by liquid chromatography-mass spectrometry. By searching according to the structural features of ACE inhibitory peptides, 29 and 11 peptides containing ACE inhibitory peptide features were found in fermented buffalo milk and fermented cow milk, respectively. To investigate the in vivo antihypertensive activity of fermented buffalo milk, 18 pregnant rats were divided into 3 groups (n = 6 in each group) and administered 10 mL of normal saline, yogurt (20 mg/kg), or labetalol hydrochloride (4 mg/kg) daily from the beginning of pregnancy to parturition. To induce hypertension, methyl nitrosoarginine (125 mg/kg) was injected subcutaneously every day from d 15 of pregnancy to the day of delivery. Blood pressure was not significantly changed in the yogurt and labetalol groups after induction of hypertension and was lower compared with the normal saline group, but there was no difference between the yogurt and labetalol groups. This implied that the buffalo yogurt had a preventive and antihypertensive effect in the pregnancy-induced hypertensive rat model. Further studies to determine the mechanism of action, as well as a randomized control trial, are warranted.


Assuntos
Hipertensão , Labetalol , Lactobacillus plantarum , Probióticos , Humanos , Feminino , Bovinos , Ratos , Animais , Gravidez , Leite/química , Iogurte/análise , Leite Humano/química , Anti-Hipertensivos/farmacologia , Anti-Hipertensivos/análise , Pressão Sanguínea , Labetalol/análise , Solução Salina/análise , Peptídeos/análise , Hipertensão/veterinária , Fermentação , Angiotensinas/análise , Probióticos/análise
7.
J Sci Food Agric ; 104(2): 1085-1091, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37728986

RESUMO

BACKGROUND: The aim of this study was to investigate the effects on some physicochemical properties and starter cultures of yogurts enriched with vitamins at different concentrations during storage. For this purpose, yogurt was produced by adding the vitamins folic acid (B9 ), biotin (B7 ), and vitamin D3 in different concentrations to sheep and cow milk and stored at 4 °C. Physicochemical analyses and microbiological analyses were performed for each group of yogurt on days 0, 7, 14, and 21. RESULTS: There was no significant difference (P > 0.05) between the groups in pH and titration acidity (%) during storage. It was determined that in the yogurts produced from sheep milk, the groups enriched with vitamins had a higher number of L. bulgaricus than the control group on the 7th day of storage. Moreover, the groups containing vitamin D3 exhibited a higher Lactobacillus bulgaricus count on the 21st day of storage. The highest L. bulgaricus counts on the 7th day in yogurts produced from cow's milk were observed in groups containing 0.5 mL of vitamin B9 and B7 . No mold or yeast growth was observed during storage in any of the yogurt groups made from cow and sheep milk. CONCLUSION: In conclusion, it was determined that the enrichment of yogurt with vitamins B7 , B9 , and D3 did not adversely affect the quality of the yogurt; rather, it improved. We recommend that yogurt enriched with micronutrients be studied economically, and mass production should be initiated by yogurt companies as soon as possible. © 2023 Society of Chemical Industry.


Assuntos
Biotina , Leite , Feminino , Bovinos , Animais , Ovinos , Leite/química , Biotina/análise , Ácido Fólico/análise , Colecalciferol , Iogurte/análise , Vitaminas/análise , Fermentação
8.
J Agric Food Chem ; 72(1): 894-903, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38112332

RESUMO

Untargeted nuclear magnetic resonance (NMR) metabolomics was used to evaluate compositional changes during yogurt fermentation upon lupin enrichment compared to traditional conditions. Lupin significantly changed the sample metabolic profile and its time course dynamics, seemingly delaying microbial action. The levels of organic and amino acids were significantly altered, along with those of some sugars, nucleotides, and choline compounds. Lupin seemed to favor acetate and formate synthesis, compared to that of citrate and fumarate; a higher formate levels may suggest increased levels of Streptococcus thermophilus action, compared toLactobacillus bulgaricus. Lupin-yogurt was poorer in hippurate, lactose (and hence lactate), galactose, glucose-1-phosphate, and galactose-1-phosphate, containing higher orotate levels (possibly related to increased uridine derivatives), among other differences. Trigonelline was confirmed as a lupin marker, possibly together with glutamate and histidine. Other metabolite trajectories remained unchanged upon lupin addition, unveiling unaffected underlying processes. These results demonstrate the usefulness of untargeted NMR metabolomics to understand/develop new foodstuffs and their production processes, highlighting the identity of a variety of bioactive metabolites with importance for human health.


Assuntos
Açúcares , Iogurte , Humanos , Iogurte/análise , Fermentação , Espectroscopia de Ressonância Magnética/métodos , Metabolômica , Formiatos
9.
Food Chem ; 434: 137511, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-37742554

RESUMO

Well-defined compositional assemblies of plant-based yogurt are of fast-growing awareness for world population concerning environmental sustainability, economic burdens and health risks. Soybean is an attractive candidate for plant yogurt, suffering from poor flavor, limited nutrition, and undesired allergens to offer healthy-functional segments. Herein, we deciphered a novel lycopene-soy yogurt by efficient two-stage fermentation of engineered B. subtilis and LAB. The fortified sogurt was ensured with redundant lycopene of 22.67 ± 2.95 mg/g DCW by engineered B. subtilis and enriched soy isoflavone from synergistic effects of engineered B. subtilis and LAB, possessing strong antioxidant capacity for upgrading functionality. Moreover, the desired pH, accelerated protein hydrolysis, enhanced amino acid availability, and expected sensory attributes cooperatively conferred lycopene-soy yogurt as healthy functional food. High potential is firstly ascribed to sequential dual culture of engineered B. subtilis and LAB in lycopene-soy yogurt, in which flavorful, hypoallergenic and antioxidative ingredients enabled functionalities for plant-based yogurt.


Assuntos
Leite de Soja , Iogurte , Licopeno/metabolismo , Iogurte/análise , Fermentação , Leite de Soja/química , Soja/química
10.
J Dairy Res ; 90(3): 306-311, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37649410

RESUMO

Set yogurt's physical characteristics are greatly affected by the homogenization and heat treatment processes. In our previous study, set yogurt treated at 130°C and with the fat particle size reduced to ≤0.6 µm had equivalent curd strength, less syneresis and smoother texture than yogurt treated at 95°C. When investigating the mechanisms underlying yogurt's physical properties, it is important to evaluate the yogurt's microstructure. We conducted electron microscopy evaluations to investigate the mechanisms of changes in yogurt's physical properties caused by 130°C heat treatment and by a reduction in the fat globule size. We prepared yogurt mixtures by combining heat treatment at 95 and 130°C and homogenization pressure at 10 + 5 and 35 + 5 MPa and then fermented the mixtures in a common yogurt starter. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used for the structural observations. Fine particles were observed on the surface of the casein micelles of the yogurt treated at 95°C, and the coalescence density between micelles was high. The surface of the yogurt treated at 130°C had few fine particles, and the coalescence density between micelles was low. The yogurt treated at 130°C with 35 + 5 MPa homogenization had low coalescence density between casein micelles, but smaller-particle-size fat globules increased the network density. Approximately 30% of the fat globules were estimated to be incorporated into the yogurt networks compared to the volume of casein micelles. We speculate that 130°C heat treatment alters the structure of whey protein on the surface of casein micelles and interferes with network formation, but reducing the size of fat globules reinforces the network as a pseudoprotein.


Assuntos
Caseínas , Temperatura Alta , Animais , Caseínas/química , Leite/química , Temperatura , Iogurte/análise , Micelas , Proteínas do Soro do Leite/química
11.
Molecules ; 28(15)2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37570829

RESUMO

Purslane (Portulaca oleracea L.) is rich in phenolic compounds, protein, and iron. This study aims to produce functional yogurt with enhanced antioxidant, anticancer, antiviral, and antimicrobial properties by including safe purslane extract in yogurt formulation; the yogurt was preserved for 30 days at 4 °C, and then biochemical fluctuations were monitored. The purslane extract (PuE) had high phenolic compounds and flavonoids of 250 and 56 mg/mL, respectively. Therefore, PuE had considerable antioxidant activity, which scavenged 93% of DPPH˙, inhibited the viability of MCF-7, HCT, and HeLa cell lines by 84, 82, and 80%, respectively, and inhibited 82% of the interaction between the binding between Spike and ACE2 compared to a SARS-CoV-2 inhibitor test kit. PuE (20-40 µg/mL) inhibited the growth of tested pathogenic bacteria and Candida strains, these strains isolated from spoild yogurt and identified at gene level by PCR. Caffeic acid glucoside and catechin were the main phenolic compounds in the HPLC profile, while the main flavor compound was carvone and limonene, representing 71% of total volatile compounds (VOCs). PuE was added to rats' diets at three levels (50, 150, and 250 µg/g) compared to butylated hydroxyanisole (BHA). The body weight of the rats fed the PuE diet (250 µg/g) increased 13% more than the control. Dietary PuE in rats' diets lowered the levels of low-density lipoprotein (LDL) levels by 72% and increased the levels of high-density lipoprotein (HDL) by 36%. Additionally, liver parameters in rats fed PuE (150 µg/g) decreased aspartate aminotransferase (AST), alanine aminotransferase (ALT), and malondialdehyde (MDA) levels by 50, 43, and 25%, respectively, while TP, TA, and GSH were increased by 20, 50, and 40%, respectively, compared to BHA. Additionally, PuE acts as a kidney protector by lowering creatinine and urea. PuE was added to yogurt at three concentrations (50, 150, and 250 µg/g) and preserved for 30 days compared to the control. The yogurt's pH reduced during storage while acidity, TSS, and fat content increased. Adding PuE increased the yogurt's water-holding capacity, so syneresis decreased and viscosity increased, which was attributed to enhancing the texture properties (firmness, consistency, and adhesiveness). MDA decreased in PuE yogurt because of the antioxidant properties gained by PuE. Additionally, color parameters L and b were enhanced by PuE additions and sensorial traits, i.e., color, flavor, sugary taste, and texture were enhanced by purslane extract compared to the control yogurt. Concerning the microbial content in the yogurt, the lactic acid bacteria (LAB) count was maintained as a control. Adding PuE at concentrations of 50, 150, and 250 µg/g to the yogurt formulation can enhance the quality of yogurt.


Assuntos
COVID-19 , Portulaca , Humanos , Ratos , Animais , Antioxidantes/farmacologia , Portulaca/química , Iogurte/análise , Antivirais , Células HeLa , SARS-CoV-2 , Extratos Vegetais/química , Fenóis/farmacologia , Fenóis/análise , Antibacterianos
12.
An Acad Bras Cienc ; 95(suppl 1): e20220532, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37556713

RESUMO

This study evaluated the technological viability of yogurt with the addition of green-banana biomass (Musa spp.) considering the resistant starch (BBV) as a potential prebiotic ingredient and texture agent. Four yogurt formulations were prepared: control; 3% BBV; 5% BBV; and 10% BBV. They were subjected to analysis of resistant starch, lactose, fat, total dry extract, defatted dry extract, moisture, ash, proteins, pH and titratable acidity; syneresis analysis, instrumental texture and instrumental color. All four formulations met the requirements of the identity and quality regulation for fermented milks regarding the physicochemical and microbiological parameters. In the instrumental color analysis, in all treatments with added BBV, darkening was observed after 21 days, with a reduction of a* coordinate and an increase of b* coordinate. In the instrumental texture analysis, the yogurt in the Control treatment had the highest firmness (0.430 N) at 21 days among these treatments. Among the treatments with added BBV, the yogurt with 5% added BBV showed the best results for increasing the viability of lactic bacteria. It was found that yogurt with added BBV is a promising alternative in the elaboration of functional dairy products, adding value to the banana production chain by reducing the green fruit waste.


Assuntos
Musa , Prebióticos , Biomassa , Prebióticos/análise , Amido Resistente/análise , Iogurte/análise
13.
Molecules ; 28(13)2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37446903

RESUMO

Yak yogurt, which is rich in microorganisms, is a naturally fermented dairy product prepared with ancient and modern techniques by Chinese herdsmen in the Qinghai-Tibet Plateau. The objective of this research was to assess the impact of Lactobacillus bulgaricus and Streptococcus thermophilus starter cultures on the quality and shelf life of yak yogurt, as well as the genetic stability across multiple generations, in comparison to commercially available plain yogurt and peach oat flavor yogurt. Following that, the samples were evenly divided into four treatment groups denoted as T1 (treatment 1), T2, T3, and T4, with each group employing a distinct source of yogurt formulation. T1 included L. bulgaricus, T2 comprised S. thermophilus, T3 consisted of plain yogurt, and T4 represented peach oat yogurt flavor. The findings indicate that T1 yogurt consistently presents a lower pH and higher acidity compared to the other three yogurt types throughout the entire generation process. Moreover, the fat content in all generations of the four yogurt types exceeds the national standard of 3.1 g/100 g, while the total solid content shows a tendency to stabilize across generations. The protein content varies significantly among each generation, with T1 and T4 yogurt indicating higher levels compared to the T2 and T3 yogurt groups. In terms of overall quality, T1 and T4 yogurt are superior to T2 and T3 yogurt, with T1 yogurt being the highest in quality among all groups. The findings revealed that the inclusion of L. bulgaricus led to enhanced flavor, texture, and genetic stability in yak yogurt. This study will serve as a valuable source of data, support, and methodology for the development and screening of compound starters to be utilized in milk fermentation in future research and applications.


Assuntos
Lactobacillus delbrueckii , Iogurte , Animais , Bovinos , Iogurte/análise , Leite/química , Tibet , Lactobacillus delbrueckii/metabolismo , Streptococcus thermophilus/metabolismo , Fermentação
14.
Food Chem ; 429: 136849, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37481983

RESUMO

The study aimed to investigate the impact of fermentation conditions on c9,t11-conjugated linoleic acid (CLA) synthesis by Lactobacillus casei, as well as its effects on whey syneresis, water holding capacity (WHC), and texture characteristics of set yogurt. The amount of whey syneresis decreased about 30% with the adding of 0.1% linoleic acid (LA). The interaction between LA and casein (CS), ß-lactoglobulin (ß-Lg) and bovine serum albumin (BSA) was observed by UV-Vis absorption spectroscopy, 3D fluorescence spectroscopy and CD spectroscopy. It found that LA changed the microenvironment and polarity around amino acids, as well as the conformation of the three milk proteins. Scanning electron microscope (SEM) analysis revealed that the addition of LA resulted in a more uniform and compact microstructure of the set yogurt. It indicates that LA can promote the crosslink of milk proteins, which may be the reason for the reduction of whey syneresis in set yogurt.


Assuntos
Ácidos Linoleicos Conjugados , Proteínas do Leite , Proteínas do Leite/química , Soro do Leite/metabolismo , Ácido Linoleico/farmacologia , Ácidos Linoleicos Conjugados/metabolismo , Iogurte/análise , Fermentação , Proteínas do Soro do Leite/química
15.
Food Chem ; 419: 136076, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37004366

RESUMO

Fucoxanthin (FX) extracted from Undaria pinnatifida by an ultrasonic-assisted extraction (UAE) procedure was successfully added to the fermented yogurt through a stably nanoencapsulation. The physicochemical characteristics, texture analysis, rheological testing, sensory evaluation, simulated digestion analysis, and 16SrDNA sequencing analysis were used to evaluate the effect of encapsulated-FX on the function, structure and stability of the fermented yogurt during 7 days cold storage. Encapsulated-FX with a highly water dispersion, changed the microstructure of yogurt, making it more uniform and denser, enhanced the antioxidant activity, increased the stability of milk protein in simulated gastric environment in vitro and promoted the absorption of protein small molecule fragments in the intestine, and inhibited the growth of harmful bacteria during cold storage. This study provided a simple strategy for the production of FX-fortified yogurt by using an effective nanoencapsulation technology, and promoted the extraction and application of active ingredients of edible brown algae.


Assuntos
Xantofilas , Iogurte , Fenômenos Químicos , Proteínas do Leite/análise , Xantofilas/análise , Iogurte/análise , Temperatura Baixa
16.
J Food Sci ; 88(6): 2273-2285, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37092311

RESUMO

The effects of whey protein isolate (WPI)-pectin pre-emulsified vegetable oil on the physicochemical properties and microstructure of low-fat yogurt (LFY) were investigated by particle size distribution, water-holding capacity (WHC), texture, rheology, electron microscopy, storage stability, and sensory analysis. The vegetable oil was pre-emulsified into two types of emulsions, a mixed emulsion (ME: WPI-pectin complexes were adsorbed directly at the interface) and a bilayer emulsion (BE: Pectin was added to a previously established WPI-stabilized interface). The results showed that yogurts added with pre-emulsified vegetable oil (ME-Y, BE-Y) had significantly better quality than LFY, with better WHC, textural properties, rheological properties, and storage stability. The average particle size of ME (11.96 µm) was larger than that of BE (10.23 µm). The consistency of yogurt added with ME (ME-Y) was significantly higher than that of yogurt added with BE (BE-Y), at 2359.10 and 2181.12 g s, respectively. Meanwhile, ME-Y exhibited storage stability similar to full-fat control (FFY) and higher sensory scores. Interestingly, the WHC of BE-Y (49.03%) was higher than that of ME-Y (45.63%). In addition, WPI + Pectin-Y exhibited higher WHC (53.81%) and consistency (2518.73 g s) compared to ME-Y and BE-Y, but the particle size distribution was not uniform, and the direct addition of WPI, pectin, and oil had no positive effect on improving the rheological properties of yogurt. Overall, the addition of WPI-pectin pre-emulsified vegetable oil improved the quality of LFY. These findings are particularly relevant for the production of higher quality LFY.


Assuntos
Pectinas , Óleos de Plantas , Proteínas do Soro do Leite/química , Pectinas/química , Emulsões/química , Iogurte/análise
17.
Molecules ; 28(7)2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37049830

RESUMO

This study investigated the effect of oat ß-glucan as a fat substitute on the structure formation, texture, and sensory properties of pea protein yogurt. The results showed that the incorporation of 0.5% ß-glucan significantly accelerated the lactic acid bacteria-induced fermentation, with the time for reaching the target pH of 4.6 shortened from 3.5 h to 3 h (p < 0.05); increased the plastic module (G') from 693 Pa to 764 Pa when fermenting 3 h (p < 0.05); and enhanced the water-holding capacity from 77.29% to 82.15% (p < 0.05). The identification of volatile organic compounds (VOCs) in low-fat pea protein yogurt by GC-IMS revealed a significant decrease in aldehydes and a significant increase in alcohols, ketones and acids in the pea yogurt after fermentation (p < 0.05). Among them, the levels of acetic acid, acetone, 2,3-butanedione, 3-hydroxy-2-butanone, and ethyl acetate all significantly increased with the addition of oat ß-glucan (p < 0.05), thereby providing prominent fruity, sweet, and creamy flavors, respectively. Combined with the results of sensory analysis, the quality characteristics of pea protein yogurt with 1% oil by adding 1% oat ß-glucan were comparable to the control sample with 3% oil. Therefore, oat ß-glucan has a good potential for fat replacement in pea protein yogurt.


Assuntos
Proteínas de Ervilha , beta-Glucanas , Iogurte/análise , Paladar , beta-Glucanas/química , Avena/química
18.
Int J Biol Macromol ; 235: 123887, 2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-36870663

RESUMO

The effect of sodium alginate (SA) on the yogurt stability and the related mechanisms were investigated. It was found that low-concentration SA (≤0.2 %) increased the yogurt stability, while high-concentration SA (≥0.3 %) decreased the yogurt stability. Sodium alginate increased the viscosity and viscoelasticity of yogurt and this effect was positively correlated with its concentration, suggesting that SA worked as the thickening agent in yogurt. However, addition of ≥0.3 % SA damaged the yogurt gel. These results suggested that interaction between milk protein and SA might play an important role in the yogurt stability besides the thickening effect. Addition of ≤0.2 % SA did not change the particle size of casein micelles. However, addition of ≥0.3 % SA induced aggregation of casein micelles and increased the size. And the aggregated casein micelles precipitated after 3 h storage. Isothermal titration calorimetry analysis showed that casein micelles and SA were thermodynamically incompatible. These results suggested that the interaction between casein micelles and SA induced aggregation and precipitation of casein micelles, which was critical in the destabilization of yogurt. In conclusion, the effect of SA on the yogurt stability was dependent on the thickening effect and the interaction between casein micelles and SA.


Assuntos
Caseínas , Micelas , Caseínas/química , Iogurte/análise , Proteínas do Leite/química , Tamanho da Partícula
19.
Molecules ; 28(5)2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36903370

RESUMO

Lactic acid bacteria (LAB) are industrially important bacteria that are widely used in the fermented food industry, especially in the manufacture of yogurt. The fermentation characteristics of LAB are an important factor affecting the physicochemical properties of yogurts. Here, different ratios of L. delbrueckii subsp. bulgaricus IMAU20312 and S. thermophilus IMAU80809 were compared with a commercial starter JD (control) for their effects on viable cell counts, pH values, titratable acidity (TA), viscosity and water holding capacity (WHC) of milk during fermentation. Sensory evaluation and flavour profiles were also determined at the end of fermentation. All samples had a viable cell count above 5.59 × 107 CFU/mL at the end of fermentation, and a significant increase in TA and decrease in pH were observed. Viscosity, WHC and the sensory evaluation results of one treatment ratio (A3) were closer to the commercial starter control than the others. A total of 63 volatile flavour compounds and 10 odour-active (OAVs) compounds were detected in all treatment ratios and the control according to the results from solid-phase micro-extraction-gas chromatography-mass spectrometry (SPME-GC-MS). Principal components analysis (PCA) also indicated that the flavour characteristics of the A3 treatment ratio were closer to the control. These results help us understand how the fermentation characteristics of yogurts are affected by the ratio of L. delbrueckii subsp. bulgaricus to S. thermophilus in starter cultures; this is useful for the development of value-added fermented dairy products.


Assuntos
Produtos Fermentados do Leite , Lactobacillus delbrueckii , Animais , Iogurte/análise , Streptococcus thermophilus , Fermentação , Leite/química , Aromatizantes/análise
20.
Food Res Int ; 164: 112375, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36738019

RESUMO

The aim of this study was to investigate and compare the physicochemical characteristics and volatile flavor compounds of three kinds of yoghurt made from reconstituted milk, soy drink and oat drink. The results showed that with the same fermentation ending pH of 4.5, reconstituted yoghurt had the highest titratable acidity mainly due to the highest buffering capacity and microbial counts (LAB). The textural and water holding capacity (WHC) parameters revealed that soy-based yoghurt had the highest firmness, consistency and WHC, indicating more rigid gel was formed. Meanwhile, rheological analysis showed soy-based yoghurt owned higher G' and G'' values and higher stability against external stress, demonstrating that more and stronger interactions between soy proteins were built during fermentation. The confocal laser scanning microscopy (CLSM) image witnessed that soy-based yoghurt had the densest and finest network, while oat-based yoghurt had much coarser and looser structure, which was consistent with the lowest firmness and G' value for oat-based yoghurt. In terms of color, reconstituted yoghurt was the lightest and oat-based yoghurt showed more reddish and yellowish. The main volatile flavor compounds in all yoghurts were ketones, while aldehydes contributed more in soy and oat yoghurt. PCA plot showed that volatile flavor compounds of reconstituted yoghurt and oat-based yoghurt were relatively similar, while soy-based yoghurt was much more different with high OAVs of hexanal, 1-octen-3-one, 1-octen-3-ol and 2-octenal. This study supplied a theoretical basis and an improvement direction for the better development of healthier plant-based yoghurt similar to dairy yoghurt.


Assuntos
Iogurte , Iogurte/análise , Fenômenos Químicos , Paladar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...